SCANN: Side Channel Analysis of Spiking Neural Networks

نویسندگان

چکیده

Spiking neural networks (SNNs) are quickly gaining traction as a viable alternative to deep (DNNs). Compared DNNs, SNNs computationally more powerful and energy efficient. The design metrics (synaptic weights, membrane threshold, etc.) chosen for such SNN architectures often proprietary constitute confidential intellectual property (IP). Our study indicates that implemented using conventional analog neurons susceptible side channel attack (SCA). Unlike the SCAs aimed leak private keys from cryptographic implementations, SCANN (SCA̲ of spiking n̲eural n̲etworks) can reveal sensitive IP within through power channel. We demonstrate eight unique attacks by taking common neuron (axon hillock neuron) test case. chose this particular model since it is biologically plausible hence good fit SNNs. Simulation results indicate different synaptic neurons/layer, thresholds, capacitor sizes (which building blocks SNN) yield distinct spike timing signatures, making them vulnerable SCA. show an adversary use templates (using foundry-calibrated simulations or fabricating known parameters in chips) analysis identify specifications SNN.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Analysis Framework for Adaptive Spiking Neural Networks

Learning is an inherently closed-loop process that involves the interaction between an intelligent agent and its environment. In the human brain, we assert that the basis for learning is in its ability to represent external stimuli symbolically in an associative memory. Historically, statistical methods such as the hidden Markov model have been used in order to provide the internal symbolic rep...

متن کامل

Modeling spiking neural networks

A notation for the functional specification of a wide range of neural networks consisting of temporal or non-temporal neurons, is proposed. The notation is primarily a mathematical framework, but it can also be illustrated graphically and can be extended into a language in order to be automated. Its basic building blocks are processing entities, finer grained than neurons, connected by instant ...

متن کامل

Embedded spiking neural networks

In this paper we introduce the ongoing research at our department concerning hardware implementations of spiking neural networks on embedded systems. Our goal is to implement a spiking neural network in reconfigurable hardware, more specifically embedded systems. Keywords— Hardware neural networks, embedded sys-

متن کامل

Applications of spiking neural networks

We are pleased to introduce this issue of Information Processing Letters presenting state-of-the-art articles on Applications of Spiking Neural Networks. Spiking neural networks are a class of neural networks that is increasingly receiving attention as both a computationally powerful and biologically more plausible model of distributed computation. Much work so far has focused on fundamental is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cryptography

سال: 2023

ISSN: ['2410-387X']

DOI: https://doi.org/10.3390/cryptography7020017